ON (k, 6)-GRAPHS ARISING FROM PROJECTIVE PLANES

نویسندگان

  • ANDRÁS GÁCS
  • TAMÁS HÉGER
  • ZSUZSA WEINER
چکیده

We study a construction method (first used in a paper by Brown [7] and having been rediscovered by several authors recently) producing small (k, 6)-graphs. We prove that under some conditions the known constructions are best possible in the sense that one cannot hope for smaller examples from this method. Both algebraic and combinatorial tools are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On regular graphs of girth six arising from projective planes

In 1967, Brown constructed small k-regular graphs of girth six as induced subgraphs of the incidence graph of a projective plane of order q, q ≥ k. Examining the construction method, we prove that starting from PG(2, q), q = p, p prime, there are no other constructions using this idea resulting in a (q + 1− t)-regular graph of girth six than the known ones, if t is not too large (t ≤ p and roug...

متن کامل

The Endomorphism Type of Certain Bipartite Graphs and a Characterization of Projective Planes

In [2] Fan determines the endomorphism type of a finite projective plane. In this note we show that Fan’s result actually characterizes the class of projective planes among the finite bipartite graphs of diameter three. In fact, this will follow from a generalization of Fan’s theorem and its converse to all finite bipartite graphs with diameter d and girth g such that (1) d + 1 < g ≤ 2d, and (2...

متن کامل

FINITE s-ARC TRANSITIVE CAYLEY GRAPHS AND FLAG-TRANSITIVE PROJECTIVE PLANES

In this paper, a characterisation is given of finite s-arc transitive Cayley graphs with s ≥ 2. In particular, it is shown that, for any given integer k with k ≥ 3 and k 6= 7, there exists a finite set (maybe empty) of s-transitive Cayley graphs with s ∈ {3, 4, 5, 7} such that all s-transitive Cayley graphs of valency k are their normal covers. This indicates that s-arc transitive Cayley graphs...

متن کامل

On orienting graphs for connectivity: Projective planes and Halin graphs

Nash-Williams proved that the edges of a k-edge connected (undirected) graph can be oriented such that the resulting directed graph is ⌊ 2 ⌋-edge connected. A long-standing goal in the area is to obtain analogous results for other types of connectivity, such as node connectivity, element connectivity, and hypergraph edge connectivity. We focus on two special classes of graphs, namely, incidence...

متن کامل

On Minimal Pseudo-Codewords of Tanner Graphs from Projective Planes

We would like to better understand the fundamental cone of Tanner graphs derived from finite projective planes. Towards this goal, we discuss bounds on the AWGNC and BSC pseudo-weight of minimal pseudo-codewords of such Tanner graphs, on one hand, and study the structure of minimal pseudo-codewords, on the other.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009